Dynamic correlation network analysis of financial asset returns with network clustering

نویسنده

  • Takashi Isogai
چکیده

In this study, we propose a novel approach to analyze a dynamic correlation network of highly volatile financial asset returns by using a network clustering algorithm to deal with high dimensionality issues. We analyze the dynamic correlation network of selected Japanese stock returns as an empirical study of the correlation dynamics at the market level by applying the proposed method. Two types of network clustering algorithms are employed for the dimensionality reduction. Firstly, several stock groups instead of the existing business sector classification are generated by the hierarchical recursive network clustering of filtered stock returns in order to overcome the high dimensionality problem due to the large number of stocks. The stock returns are then filtered in advance to control for volatility fluctuations that can distort the correlation between stocks. Thus, the correlation network of individual stock returns is transformed into a correlation network of group-based portfolio returns. Secondly, the reduced size of the correlation network is extended to a dynamic one by using a model-based correlation estimation method. A time series of adjacency matrices is created on a daily basis as a dynamic correlation network from the estimation results. Then, the correlation network is summarized into only three representative correlation networks by clustering along the time axis. Some intertemporal comparisons of the dynamic correlation network are conducted by examining the differences between the three sub-period networks. Our dynamic correlation network analysis framework is not limited to stock returns, but can be applied to many other financial and non-financial volatile time series data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building a dynamic correlation network for fat-tailed financial asset returns

In this paper, a novel approach to building a dynamic correlation network of highly volatile financial asset returns is presented. Our method avoids the spurious correlation problem when estimating the dynamic correlation matrix of financial asset returns by using a filtering approach. A multivariate volatility model, DCC–GARCH, is employed to filter the fat-tailed returns. The method is proven...

متن کامل

Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements

For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...

متن کامل

Asset returns and volatility clustering in financial time series

An analysis of the stylized facts in financial time series is carried out. We find that, instead of the heavy tails in asset return distributions, the slow decay behaviour in autocorrelation functions of absolute returns is actually directly related to the degree of clustering of large fluctuations within the financial time series. We also introduce an index to quantitatively measure the cluste...

متن کامل

Dynamic Network Data Envelopment Analysis Model Usage in Measuring and Ranking the Financial Performance of Social Security Hospitals Based on their Size

Background: Measuring the hospitals financial performance in the health care system is of great importance. This is because hospitals with good financial performance can maintain reliable systems and provide necessary resources to improve quality. The aim of this study was to measure, compare and rank the financial performance of social security hospitals based on their size using a dynamic net...

متن کامل

Co-Volatility and Correlation Clustering : A Multivariate Correlated ARCH Framework

We present a new, full multivariate framework for modelling the evolution of conditional correlation between financial asset returns. Our approach assumes that a vector of asset returns is shocked by a vector innovation process the covariance matrix of which is timedependent. We then employ an appropriate Cholesky decomposition of the asset covariance matrix which, when transformed using a Sphe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Network Science

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017